MikeJ. Keith and Martin C. Martin

The purpose of our current research is to investigate the design and implementation of a Genetic
Programming platform in C++, with primary focus on efficiency and flexibility. In this chapter we
consider the lower level implementation aspects of such a platform, specifically, the Genome Inter-
preter. The fact that Genetic Programming is a computationally expensive task means that the over-
al efficiency of the platform in both memory and time is crucia. In particular, the node
representation is the key part of the implementation in which the overhead will be magnified. We
first compare a number of ways of storing the topology of the tree. The most efficient representation
overal is one in which the program tree is a linear array of nodes in prefix order as opposed to a
pointer based tree structure. We consider trade-offs with other linear representations, namely postfix
and arbitrary positioning of functions and their arguments. We then consider how to represent which
function or terminal each node represents, and demonstrate avery efficient one to two byte represen-
tation. Finaly, we integrate these approaches and offer a prefix/jump-table (PJT) approach which
results in a very small overhead per node in both time and space compared to the other approaches
we investigated. In addition to being efficient, our interpreter is also very flexible. Finaly, we dis-
cuss approaches for handling flow control, encapsulation, recursion, and simulated parallel program-
ming.

13.1 Introduction

In this chapter we explore the lower level implementation issues surrounding what we call
the Genome Interpreter. Provided is example code from 5 test programs which were used
to evaluate performance. Section 13.8 summarizes the results of these tests and discusses
the trade-offs involved with the various implementations.

For the upcoming discussion, what we call an interpreter specifies the following lower
level aspects of the design:

¢ theraw node representation

* how atree of nodesis represented

* the method for evaluating an individual node
¢ the method for evaluating the tree as awhole

¢ the methods for (or methods to assist) those genetic operators which are dependent on
the node or tree representation.

A key point isthat the interpreter specifies the node implementation which is the partic-
ular part of the platform-coding in which the overhead will be magnified. Therefore, the
interpreter is the most crucial component in the overall design with respect to space/time
efficiency.

In order to illustrate the extremity of the node magnification, consider an application
which uses a population size M of 2000 programs in which the average size P, of each
individual program tree consists of 200 nodes. Also, consider a typical scenario that, in
order to establish the fithess of each program, it must be executed over 20 test cases (let C
be the number of test cases required). Therefore, for each generation, the total number of
nodes which must be processed Np and stored N is:

N, = MP_,.C = 8, 000,000

p

Ng = MP,, = 400, 000 (13.)
For tougher problems, the magnification factor increases at least quadratically since

both the program size and the population size must increase.

13.2 Pointer Based | mplementations

Koza [1992] and Tackett [1993] offer pointer based implementations for use in genetic
programming in which each program is a parse tree and each node contains a pointer to
each child or input. This “traditional” approach for representing the tree structure is typi-
cally coded in C as shown in Figure 13.1.

Here, RETURN_TYPE stands for the data type that the node evaluates to. Note that the
Ar gs parameter is an array of pointers to other Nodes and allows a collection of such
Node structures to be connected into a tree. A memory management mechanism is
required to allocated and de-allocated memory for these nodes on demand. One can typi-
cally execute such atree structure as shown in Figure 13.2.

struct Node {
unsi gned char Type ;
unsi gned char Arity ;
RETURN_TYPE Val ue ;
struct Node *Args[MAX_ARGS] ;
RETURN_TYPE Ar gVal ues[MAX_ARGS] ;
RETURN_TYPE (*Eval Func)(); /* pointer to function that
eval uates the subree rooted at this node. */

}

Figure13.1
A traditional pointer-based tree structure coded in C.

RETURN_TYPE Eval (struct Node *N)

{
if (N->Type == TERM NAL) return N->Val ue ;
if (N->Type == MACRO) return (*N->Eval Func)(N);
el se {
for (i=0; i<N->Arity; i++)
ArgVal ues[i] = Eval (N->Args[i]);
return (*N->Eval Funct) (N);
}
}
Figure13.2

This routine recursively evaluates a subrtee; in the results section it isreferred to asthe “if statement tree”. If the
subtree is amacro, we simply call the evaluation function. Otherwise, we recursively call Eval () on each

class Node { public: virtual RETURN_TYPE Eval ()=0; };
cl ass AddNode : public Node
{

Node *Arg[2];
public:

RETURN_TYPE Eval () {return Arg[0]->Eval () + Arg[1]->Eval ();}
b

cl ass VarNode : public Node

i nt | ndex;
public:

RETURN_TYPE Eval () {return VarTabl e[| ndex];}
b

Figure13.3

An example of a pointer based tree representation in C++; in the results section it is referred to as the “ virtua
function tre€”. Inheritance and virtual functions are used to ensure that the appropriate evaluation function is
called and so that each node takes up only the amount of memory necessary.

This recursive routine will execute the genome in a post-order fashion (evaluating chil-
dren before parent) unless the Type of the node is MACRO. In this case, the node must call
Eval () to evaluate whichever of it's own functionsit needs.

The overhead in both time and memory for the example code above is significant. In
many cases, the interpreter spends more time parsing the Ty pe information than it takesto
execute the node itself. In fact, because evaluating a typical GP token (like ADD, OR,
const , etc.) is usually accomplished in a single machine instruction, it is imperative that
we omit the type parsing completely. We can do thisin C by making all functions macros
and removing the Type field, or more elegantly in C++ using virtual functionsasin Figure
13.3.

Obvioudly, this is a superior approach and reduces the node time-overhead. Note that
the tree structure is executed in a pre-order traversal. A minor disadvantage to this coding
isthat the Eval method in each of the derived classesis dowed down by the virtual func-
tion mechanism used in C++ [Eckel 1990]. Therefore, we coded this approach without the
inheritance in C which resulted in the fastest implementation in this chapter. The only
overhead required to evaluate the child of a node is two pointer indirections, an array ref-
erence and afunction call.

The minimum average memory used to represent a node in a pointer based representa-
tion can be calculated using a small trick. Each node, although it may have any number of
children, has exactly one parent (except for the root). By associating each edge with it's
child instead of it's parent, we see that in a tree of N nodes, there are N—1 edges. For
large N, then, there is on average one edge per node and hence one Ar g pointer per Node.
The linear schemes below show how to represent a tree with no memory overhead at all
used to record the topology of the tree. Overall, then, the efficiency of pointer-based repre-
sentations is quite poor in comparison to the linearized implementations discussed bel ow.
This C++ approach above allows each class derived from Node to uniquely define its
parameters thus minimizing the memory overhead and achieving the lower bound of one
pointer per node to store structure. Therefore, thisis our preferred pointer-based approach.
We should also point out that all of the pointer-based implementations require a memory
management service which adds some additional speed overhead and coding complexity
to their implementations.

13.3 A Postfix, Stack-Based Approach

We now introduce a stack based approach in which each function and terminal isresponsi-
ble for getting its own arguments (if any) by popping them from a stack and pushing its
single output on a stack. This is similar to the FORTH programming Language (see
Winfield [1989]). Consider the 7-node program below:

Postfix: ab +c¢cd- + Infix: (a+b) + (c-d)

The stack convention just described provides an “implicit connection” between nodes.
For example, terminal node a will push its value onto the empty stack, then b will do the
same. At this point the stack contains the two valueswith b’s on top. The + node then pops
two values (in this case a and b), adds them and puts the result back on the stack. This
implicit connection allows us to omit the Ar g pointers needed in the pointer based imple-
mentation and store the entire program as an array of nodes, as shown in Figure 13.4

cl ass Program

{
int Size;
Node Genone[MAX_GENOVE_SI ZE] ;
St ack stack;
public:
RETURN_TYPE Eval () ;
b

RETURN_TYPE Program : Eval () {
for (int i=0; i<Size; i++) { // For each node in order:
switch (Genone[i]. Get Type()) {
case ADD: { stack.PUSH(stack.POP() + stack.POP()) ; break; }
case MULLT: { stack.PUSH(stack.POP() * stack.POP()) ; break; }
case VAR { stack.PUSH(genone[i].GetVar()); break; }

}
}
}

Figure13.4
The postfix program representation and an example tree evaluation function. There is no memory used to
represent the tree topol ogy.

Each program entity can be implemented as a record in which the program’s tree is
stored, not with pointers, but with a simple linear array. To execute such a program, we
can simply index through the array and execute each node using a case Statement as
shown in the Figure.

Thus the node execution overhead in thisimplementation consists of 1 case lookup per
node aswell as 1 or 2 increments/decrements per node to maintain the stack, and an incre-
ment to move along the genome. Note that the Get Type and Get Var routines are methods
encapsulated in an unspecified Node class. A potential advantage of this schemeisthat the
base functions can be in-line thus avoiding the function call overhead. However, we found
the case statement overhead in addition to the stack overhead made this approach rela-
tively slow.

Stack-based implementations in general do not require the linear string of opcodes to
represent a syntactically correct parsetree. Thisisa potential advantage of the stack-based
approach since the other interpreters we considered require the syntax to be maintained.

We can see that our first linear approach meets many of the goals which we set out to
address. We can directly access any entry in the genome-array which alows many manip-
ulations of the genome to be simplified, especially choosing arandom node. Furthermore,
the array representation also allows the memory management mechanism to be com-
pletely omitted. The primary advantage of this approach, however, isthat it provideslarge

savings on the node size overhead since the implicit-connection feature uses no memory
to represent the tree’s topol ogy.

13.3.1 Memory Efficiency

Using fixed-sized arrays to hold variable-sized Genomes can obviously result in a certain
amount of space being unused. Therefore, although each node in an implicit-connection
scheme can only take up 2 bytes, the effective node size (S,) is greater than the actual
node size (S,) in relation to the average unused array space (U,) and average genome
size (G e):

Uave
S =S5+ q{ve (13.2)

However, the fact that individuals tend to always use up as much space as they can,
tends to minimize this effect and cause the array size to implicitly provide parsimony.

Thereisaway to further minimize this overhead and to allow the population to explore
avariety solutions which have different space requirements on the genome. Theideaisto
simply provide adistribution of array sizesin the population. Each program structure has a
Tr ai t | ndex parameter which specifies a set of characteristics for that individual or per-
haps all individualsin a given region:
class Program{ int Size; char Traitlndex; /* others...*/};
class Trait { int MaxSize, M nsize, MaxLoopDepth, /* others...*/};

ThustheTrai t I ndex isanindex into an array of Tr ai t swhich allows usto reference
the array size (MaxSi ze) of the individual. So if a given problem requires an expected
genome size of N, we create a set of Individuals whose array sizes are distributed between
N-d and N+d where d is the configurable array-size deviation. Note that the genetic opera-
tors must not perform an ateration on an individual which violates its MaxSi ze con-
straint. Also note that this still does not require us to use a memory manager since our
variable-sized arrays remain static once created. In general, this trait-table approach
allows usto explore arange of possibilities for any characteristic we chose.

13.3.2 Manipulating Postfix Programs

In order to faithfully implement the traditional GP operators, we must ensure that after ini-
tialization, crossover and mutation we have a valid representation of a tree. The basis of
the following algorithms is to use the arity of every node to allow the syntax to be adhered
to. At this point it should be mentioned that since none of these operations are performed
while calculating fitness, their efficiency in general is not of prime concern.

13.3.2.1 Postfix Initialization

We can initialize a linear array of nodes as an implied tree in the same recursive manner
that pointer based trees are initialized [Koza 1992]. One difference is that in addition to a
MaxDept h constraint, one needs to also constrain the size of the implied tree to be no
greater than the genome array size. This can be accomplished by having a parameter
which keeps a count of the number of open branches and using it as follows:

i f ((NunOpenBranches + CurrentSize) == TargetSize) Resolve = TRUE;

Where Resol ve isaflag which forces al subsequent nodesto be terminals thus forcing
all open branches to be resolved. A second difference associated with initializing a postfix
tree isthat we need to initialize from right to left so that we can begin with function nodes
and end with terminal nodes. We conclude the initialization process by copying al of the
nodes left so they start at the zero position in the array.

Note, however, that the above method will tend to produce lopsided trees. To avoid this,
we can allocate enough memory to hold the biggest tree for the depth we want, and then
recursively initialize the array, as show in Figure 13.5

However, the fact that we have a linearized implementation should motivate us to
explore aternative techniques for various genetic operators. Based on the current scheme,
one can initialize a valid postfix expression by simply requiring that the ongoing St ack-
Count , as we scan from left to right, is never negative and that the final count is 1. Note
that the St ackCount for a token equals the number of arguments it places on the stack
minus the number of arguments it takes off the stack. If we initialize in the reverse direc-
tion (from right to left as shown below) the cumulative St ackCount never becomes posi-
tive until we reach the end at which point the overall sum still needsto be 1. One can aso

int Program:lnitialize (int depth, int max_args, int |oc)

if (depth == 0) Genone[loc].lnitialize(0) ; // init to term nal
el se {
int numargs = /* random nunber fromO to max_args */ ;
for (int i=0; i<num.args; i++) { // make the argunents
loc =1 + Initialize (depth-1, nmax_args, loc) ;

Genone[loc].Initialize(numargs) ;
}
}

Figure 13.5

This method recursively initializes an instance of aPr ogr amclass. It returnsthe last location in the array that
itinitialized, and inputs the depth of the tree to create, the maximum number of arguments that a node can have,
and the location in the array at which to start.

Initialize (int TargetSize, int M nCount)

{
int i, CurrentSize = 0;
Node *NodePtr = Genone + MaxGenoneSi ze;

while (1) {
if ((++CurrentSize + abs(StackCount)) == TargetSize) ||
(StackCount == M nCount))
St ackCount += Get Randoniler ni nal (- - NodePtr);
else if (StackCount == 0)
St ackCount += Get Randonfunti on(--NodePtr);
el se
St ackCount += Get RandomToken(- - NodePtr);
if (CurrentSize == TargetSize) break;
}

for (i=0; i<TargetSize; i++) //left shift the genone
*NodePtr = *NodePtr++ + (MaxGenoneSi ze- Target Si ze) ;
}

Figure 13.6
A method to initialize agenome using the constraint that the cumul ative stack count must never become positive.
Note that it initializes the genome from right to |eft, then shiftsit to start at the proper place.

add another constraint, M nCount , which allows usto loosely control the implied shape of
the linearized tree (see Figure 13.6).

13.3.2.2 Postfix Crossover

Our golden rule, that the St ackCount sumsto 1 over any legal postfix expression, can be
extended to subtrees also. That is, if one starts at any point X on a postfix expression and
sums leftwise until onereaches point Y where the St ackCount first goesto 1, then points
X and Y will span the subtree whose root node is X. Note that terminal's constitute a sub-
tree of size one and are, on average, the most commonly exchanged subtrees.

Sinceit isasimple matter of determining where a subtree ends, implementing the tradi-
tional GP crossover as a subtree exchange operation is straightforward. But again, since
we are exploring linear approaches, it seems suitable to consider the implementation of a
GA style, 1-point crossover operation [Holland 1975], [Goldberg 1989]. The stack count-
ing mechanism described in the previous section is used for such aroutine. The basic rule
is that any 2 loci on the 2 parent genomes can serve as crossover points as long as the
ongoing St ackCount just before those points is the same. This requirement forces the
syntax to be maintained. For example, consider the 2 parent genomes below, with the
ongoing St ackCount shown in brackets:

PL = { a[1], b[2], a[3], -[2], +[1], c[2], -[1] }
P2 = { d[1], e[2], +[1], b[2], +[1] }

We can exchange the segment {+, b, +} onP2withthesegment{a, -, + ¢, -},
{+, c, -} or{-} on Pl sincethe ongoing St ackCount (shown in the brackets) just
before all of these segments are the same (2).

13.3.2.3 Postfix Mutation

Mutation can be performed using part of the initialization and crossover methods. We
select a subtree to replace as we do in crossover, and then generate a subtree just like we
doininitialization. Finally, we may need to shift part of the non mutating segment in order
to make room for the mutating part.

13.3.3 TheFlow Control Problem with Postfix

The major problem with the postfix ordering schemeisitsinability to handle flow control.
The obvious dilemmais that with postfix, the arguments to a function are always executed
before the function itself making it impossible to avoid the execution of conditional sub-
expressions which we want to skip.

13.4 Mixfix

There is a way to avoid executing parts of a tree while satisfying the requirement that
functions get and return values through the stack. We simply alow certain functions to
perform arbitrary computations between evaluating arguments, and use the results of these
computations to decide whether to evaluate the next subtree or skip it. Consider a hybrid
ordering we call mixfix in which the arguments for flow control constructs are interspersed
with code for the actual function. For example, the following coding:

(if Ythen X - (ath)) + ¢
results in the following mixfix expression:
YIFXab+- ENDFc +

Here we introduced a special marker token “ENDI F” which indicates where the “I F”
function should skip to when its conditional (Y) isfalse. The delimiters are also needed in
order to maintain syntax and avoid an expression where the | F construct is left without an
ENDI F:

XY ZIF + - //the AritySumis OK but no END F

This scheme adds compl exity to the genetic operators since finding or creating subtrees
for both the | F node and the ENDI F node must be accomplished in a different manner than
the other tokens. In addition, nested conditional structures will require a counting opera-
tion so that a given conditional can find the ENDI F which belongs to it. Thiswill certainly
add execution overhead to the system. One way to minimize this overhead is to omit the
ENDI F and use a Jump-Offset as part of the | F construct:

XIF5 Xab+-c+//the IFwll skip 5 tokens if Y is FALSE

Now, the I F function simply adds its Jump Offset to the current token index in order
skip its “then” subtree as opposed to searching for an end marker. This scheme minimizes
the execution overhead associated with the delimiter approach above. However, it adds
even more complexity to the genetic operators since for expressions containing nested
conditional structures, the Jump Offsets of the outer flow constructs must be adjusted
when any of their inner subtrees are altered.

For flow constructs with more than one argument, we must distribute the individual
sub-constructs as follows:

YIF:4 ab+ ESE3cd-

In this case, if Y istrue, the | F function immediately returns allowing the execution to
continue at the a node. When the EL SE sub-construct isinvoked it simply skipsthec d -
sub-expression. When Y is false, the | F function skips to the node immediately following
the ELSE token (in this example the ¢ node).

So now we have added even more complexity to the syntax preserving operations since
the entire distributed | F- THEN- ELSE construct must be dealt with as a whole for various
operations. For example, the crossover method obviously could not exchange the (ELSE: 3
c d -)fragment by itself leaving the | F without an ELSE.

Although the stack based approaches just discussed have obvious drawbacks, they do
offer some distinct advantages over the other implementations discussed throughout this
chapter. The primary advantage of the stack based approaches are that they allows us to
easily evaluate programs in parallel manner by maintaining a different stack for each one.
This is very useful, for example, in studying emergent behavior, where one wishes to
simultaneously evaluate a number of agents interacting in the same simulation. A second
advantage is that syntactically unconstrained expressions are possible thus allowing for
experimentation along those lines. Finally, by having an explicit stack, we can control
what happens when a stack overflow occurs which is not possible for implementations
which execute recursively using a system stack.

13.5 Prefix Ordering

We realized that the best way to naturally solve the flow control problem while still taking
advantage of the memory efficiency of the linear implementation, wasto simply use apre-
fix ordering on the genotype array. Our prefix ordering scheme has 3 potential advantages
over postfix:

1. arguments must be explicitly evaluated by their parent which allows control constructs
to be implemented in a natural manner.

2. the coding required to skip a subtree is quite simple and does not require the special
mechanisms discussed previously in the mixfix section (like using jump-offsets or bracket
tokens).

3. an explicit stack mechanism is not needed which reduces coding complexity and per-
formance overhead.

We execute through the linear chromosome array recursively as shown in Figure 13.7.
For efficiency, aglobal variable keeps track of the current position within the chromosome
array. To evaluate the next argument (which is done with a call to Eval Next Arg()) we

Node *current_node ; // The current Node bei ng eval uated.

cl ass | ndividual {
Node *Genone ; // pointer to an array of nodes.
public:
RETURN_TYPE Eval ()
{ current_node = Genone; return Eval NextArg() ; }

}

inline Eval Next Arg() { return(current_node++).Eval () ; }
i nline SkipNextArg()
{ for(int count=0; count>-1; count+=(current_node++).ArityML()); }

cl ass Node {
RETURN_TYPE (*Eval Fnct) () ;
public:
RETURN_TYPE Eval () { return (*Eval Fnct)() ; }
}
int x = 1.234 ;

float add() { return Eval NextArg() + Eval NextArg(); }
float varX() { return x ; }

Figure13.7
The prefix representation and eval uation code, with example code for the nodes. Note that each Node must defin
amethod called Eval () whichuses Eval Next Ar g() to get it's arguments.

simply increment the global pointer and call the evaluation function of the node. If this
evaluation function needs arguments, it can call Eval Next Ar g() to get them; each call
gets a different argument.

Note that the distributed evaluation approach makes aborting an individual programsin
midstream difficult. Although this can be accomplished using the standard C library func-
tionssetj unp() and | ongj unp(), the evaluation schemes used in the postfix and mix-
fix implementations allow a program to be suspended or aborted at any node.

Our results in Section 13.8 show that the prefix approach is the most efficient. Also,
from inspection of the above test programs, it should be apparent that the PJT scheme pro-
vides the cleanest implementation. A key point is to note that Eval Next Ar g() includes
the important side effect operation of incrementing the node pointer. This can lead to prob-
lems for logical operations like AND which will skip evaluating (and therefore skipping)
it's second argument if the first argument is false. Therefore, a safe implementation of AND
would be:

int AND()

{
if (!Eval NextArg()) { SkipNextArg(); return FALSE, }
el se return Eval Next Arg() ;

}

13.5.1 [Initialization, Crossover and M utation with Prefix

The prefix ordering scheme allows syntax to be maintained in the same fundamental way
as postfix does. That is, by taking the arity of each node minus 1, and summing from left
to right, the overall sum must equal -1 in order for the prefix expression to be valid.

A key point with respect to initialization is that with prefix, we add terminals at the end
as we scan from left to right which allows the left-shift operation coded in the postfix ini-
tialization routine to be bypassed. Otherwise, the initialization, crossover, and mutation
implementations used for prefix are analogous to the postfix routines discussed in
Section 13.3.2

13.5.2 Handling Program Flow with Prefix

In this section we discuss various ways to handle program flow in the prefix scheme. The
fundamental ideaisto usethe Eval Next Ar g() routine to evaluate arguments and Ski p-
Next Ar g() to skip over an argument without evaluating it. These routines are shown in
Figure 13.8. Note that, in practice, we would keep track of how many iterations of the
whi | e loop we have performed and abort when the number becomes too large. The pur-

RETURN_TYPE i f _t hen_el se()

if (Eval NextArg()) {
const RETURN_TYPE result = Eval Next Arg();
Ski pNext Arg() ;
return result ;
} else {
Ski pNext Arg() ;
return Eval Next Arg() ;

}
}

RETURN_TYPE whil e ()
{

Node *Start = current_node;

whil e (Eval NextArg()) {
Eval Next Arg() ;
current_node = Start ;

}
Ski pNext Arg() ; // skip the body of the |oop
}

Figure 13.8
Implementingi f - t hen- el se and whi | e in aprefix implementation.

pose of the given code, however, is just to show how to perform iteration in the prefix
implementation.

13.6 The Node Representation

Up to this point, we have been concerned only with how to represent the topology of the
tree, and have simply used a function pointer to represent the information needed to eval u-
ate anode. In this section, we present our preferred approach for representing a node.

13.6.1 General Data Support

The idea can be seen to follow from a simple observation. If there are 256 different types
of node (functions and terminals combined, each constant counting as a different type of
node), then we only need one byte to represent the node. This byte could be used as an
index into an array of information about that type, including a function pointer, arity,
name, etc. The function pointed to we call the handler, the array we call a jump table
(sinceit’s primary purpose is hold the function pointer), and the entire entry for one type
of nodeis called atoken, represented by the Token class:

class Token { char *Name; char ArityM nusl; float (*Funct)(); /*...*/};

This strategy of simply providing memory chunks (tables) based only on the data-types
needed for an application as opposed to requiring a special token for each and every vari-
able, allows the data-declaration portion of a program to be more loosely defined up front
and even provides aframework for allowing such declarationsto evolve if needed. We call
this property general data support, and argue that for non-toy problems, the evolution of
the programs data-model in addition to its parse tree might be essential and that general
data support, while not a solution to this problem, is astep in the right direction.

13.6.2 The Opcode Format

For an application using 2 floating-point variables and many pre-defined constants, where
one byte will do, one might set up the jump-table as follows:

Functiong[0-15], Variableg16-17], Constantg[18-255]

Note that in this scheme, the pointers to the constant handler is repeated over it's range
and examines the node value itself to determine which constant is needed. See Figure
13.9. A pointer to the constant handler repeatedly appears in the jump-table in entries 18
through 255. When called, it finds which constant (between 18 and 255) is needed by
examining the current node and returns the proper entry from it’s array.

Although 256 different types may do in some applications, many applications need
more (e.g. when using random ephemeral constants or other run-time-generated terminals
such as modules). From here on we will assume that there are more than 256 but less than
65,536 types of node, so that two bytesis both necessary and sufficient. We could simply
have an array of size 65,536, but this is cumbersome. Firstly, this takes a lot of memory
and filling all entries is cumbersome. Secondly, many of these entries will be similar (e.g.
many will be distinct constants). To take advantage of this, we can use part of the two
bytes to represent the general type of node (e.g. “+”, “sin”, “constant”), and the rest of it
(if needed) to specify the exact node type (e.g. “+” and “sin” need no further explanation;
“constant” needs to know the particular value). The portion for the general type we call the
function index, and the portion for the specific type we call the specific |ookup table index,
or simply the table index. We have one function for each general type of node; the func-
tion is passed the two-byte opcode and can use the table index however it sees fit.

There are many possihilities for splitting the 16 bits available to us. For most applica-
tions, a maximum of 16 functions would suffice. Therefore we considered using 4 bits to
represent the function index and the remaining 12 bits for the table indexing. Thus our
Node structure could be coded using bit-fields:

#defi ne RETURN_TYPE fl oat
cl ass Token JunpTabl e[256] ; //nmaps node nunber to info about that node.
cl ass Node *current_node ; // The node bei ng eval uated.

/* Function handlers */

RETURN_TYPE Add() { return Eval Next Arg() + Eval NextArg() ; }
RETURN_TYPE Mult () { return Eval NextArg() * Eval NextArg() ; }
/'l other functions

/* Variable handlers */
RETURN_TYPE X, VY ;
RETURN_TYPE X() { return x ; }
RETURN_TYPE Y() { returny ; }

/* Constant handler */
RETURN_TYPE Const Tabl e[255- 18+1] ;
RETURN_TYPE Const () { return ConstTabl e[*current_node-18] ; }

RETURN_TYPE Eval Next Arg() { return (*JunpTabl e[current_node++].funct)() ; }
cl ass Node genone[] = { O/*add*/, 1/*mult*/, 16/*x*/, 17/*y*/, 16/*x*/ };

void | nitJunpTabl e()

{

JunpTabl e[0] . nane = “add” ; JunpTable[0].ArityML = 1 ;

JunpTabl e[0] . funct = Add ;

/* other functs and vars*/

for (int i=18; i<=255; i++)

JunpTabl e[i].funct = Const, JunpTable[i].ArityMnusl = -1 ;

}
Figure13.9

An example of the workings of the one byte opcode. To complete the code we also need to initialize the name
and value of each constant, and to initialize the other function entriesin the jump table. Also, the genome shown
would be for testing purposes; the real genomes would genomes would be generated at run time.

cl ass Node {
unsi gned functlndex: 4; //function index
unsi gned tabl el ndex: 12; //tabl e i ndex
/1

However, with this setup, all references of the function index and table index require
both a bitwise-AND operation and a bit-SHIFT operation which adds considerable node
overhead to the interpreter. Therefore, there is really no choice but to place the 2 indexes
on byte boundaries:

cl ass Node { unsigned char functlndex, tablelndex; };

The only possible drawback to this layout is that now we have 256 possible tables (this
is probably too many), each with room for 256 entries for variable/module/constant
lookup (this is probably too few especially for constants). The solution is to take advan-
tage of the extra function indexes. So if you want to have, let's say, 1024 possible float
constants for a given symbolic regression application, you simply reserve 4 function
indexes (4* 256 = 1024) which point you to 4 different (1 line) float handling routines. For
example, the third such routine might look like:

float Float3() {
return Fl oat Const ant Tabl e[2] [current _node- >t abl el ndex] ;

b
13.6.3 TheJump Table M echanism

Our jump table mechanism is simply the array of t oken objects. The primary benefit of
such ajump tableis that now we can select which function to execute with an array deref-
erence as opposed to a case statement. Although compilers will often compile a case
statement into such a jump table, it will still do bounds checking on the index, and so will
be slower than the hand coded jump table. If cur r ent _node pointsto a Node object, and
Tokens points to the array of t oken objects, then Eval Next Arg() can be implemented
with the statement:

return (Tokens[(current_node++)->functl| ndex].Funct) () ;

In other words, this highly efficient code fragment amounts to nothing more than incre-
menting and de-referencing a pointer, referencing an array and making a function call.

13.7 ThePrefix, Jump-Table (PJT) Approach

We think the best overall implementation of the genome interpreter uses these 4 key con-
cepts: a prefix ordering scheme, general data support, a 2-byte node representation, and a
jump-table mechanism. It is the cleanest and most modular approach, since it avoids the
need for case statements to determine the type of a node. It is the most flexible since it
naturally handles all basic flow control constructs. Finaly, in addition to the previous
attributes, it is the most efficient approach in terms of its node space/time overhead. As
any designer can testify, we were quite lucky to have such a clear winner.

13.8 Results

One must consider the relative importance of memory vs. speed. Koza [1992] provides
empirical findings which demonstrate that by tripling the population size and keeping the
case count constant, the overall efficiency of the smulation is usually doubled (the num-
ber of individuals needed to be processed is reduced by 1/2). Based on this empirical rela-
tionship, we can derive an approximation relating the efficiency (e) of oneinterpreter with
respect to another in terms of their node memory size (m) and evaluation time (t):

€ _ dood™d% _ ddhg®* (13.3)

e g Lgm

where efficiency is the simulation time required to have a 99% probability of conver-
gence. Therefore, memory overhead is not as devastating as time overhead in the node
implementation. An interpreter which evaluates nodes 4 times slower than an alternative
interpreter but uses a node representation 1/9 the size, will be equally as efficient. We use
Equation (13.3) to provide a general approximation of performance between the 5 differ-
ent interpreter variants discussed above.

We tried our linear implementations out on a number of simple problems suggested by
Koza[1992]. The results confirmed that we were able to converge as expected and essen-
tially match the results of the established tree-based representation. This follows logically
since we have afunctionally equivalent system. Table 13.1 shows the performance results
of 5 approaches presented in this chapter and also summarizes the advantages and disad-
vantages of each. We ran each test with 5 different compilers on 4 different platforms. The
data shown below represents an average over the multiple runs.

13.9 Advanced Topics (Looking for Roadblocks)

Before we can claim that the PJT interpreter represents a generally usable implementation,
we should first overview as many programming constructs which might be used in a GP
setting, and seeif such constructs pose any significant problemsto the approach. Note that
our focus in this discussion is on the mechanics of the implementation as opposed to the
actual usage of such constructsin real simulations.

13.9.1 Beyond Closure: Handling M ultiple Data Types

Itiscertainly possible that a given application has function nodes which work with a vari-
ety of different data types simultaneously. Such applications need an interpreter which

allows al of these functions to work together in a transparent and flexible manner. C++
allows objects to overload their associated casting operators and constructors allowing
automatic conversion between source and destination data objects. So, we can select a
generic data-type which all of the other object types will convert to and from (using the
automati c send/receive methods above) in atransparent manner.

This approach, which is more extensive than “closure’ as defined by Koza[1992],
works well provided that all of the different data types are convertible to/from the generic
type. Montana[1993] discusses applications where the given data types include user
defined structures like vectors and matrices. For such applications, the simple automatic-
closure mechanism might not suffice since converting avect or to ani nt for example,
might not make sense for certain handlers. Montana gets around the problem by providing
special genetic operators which only allow certain connections to be made in the node
structure. Thus a handler which expects an input of data type T will only be connected to
handlers which output type T.

An alternative, is to have the genetic operators make connections based on a connec-
tion-strength table. For example, if a crossover method was to perform a subtree exchange
resultinginastri ng tofl oat connection, it could reference this table to see how viable
that connection is. If the strength is less than some arbitrary value, then the operator sim-
ply looks again for a subtree which is more appropriate.

Table 13.1
Results and comparison of the different approaches discussed in this chapter. ty/ty and e,/e, e the run-time

and effeicency, respectively, relative to the PJT approach, and mis the number of bytes each node occupies. “Vir-
tua Function Tree” refers to coding the Eval () function as a vertual function, “If Statement Tree” refers to
having a Type field parsed by acase statement, and “Function Pointer Tree” refers to storing a pointer to the
evaluation function at each node. We assume MAX_ARGS is 2, and we disregard the memory for the Ar gVal -

ues field.

Representation t,/ty m /e Advantages Disadvantages
Prefix/Jump TabIe—fOO —1 —1.200 —Most Efficient and Flexi- —Can't do Parallel Evaua-
ble Approach. tion.
Postfix/Mixfix 1.10 1 091 Memory Efficient, Good Flow Control is Awk-
for Parallel Evaluation, ward.
Unconstrained Syntax.
Virtual Function 0.92 4 0.45 Effective, Re-usable Size Overhead, Memory
Tree Code. Manager Needed.
If Statement Tree 1.47 7 0.20 Conceptually Simple Size Overhead, Slow,
Memory Manager
Needed.
Function Pointer 0.81 6 0.40 Overall Fastest Approach, Size Overhead, Memory
Tree Conceptually Simple. Manager Needed.

For certain applications, it also might be useful to have the interpreter pass parameters
by reference as opposed to their value. The PJT scheme makes this easy since a node func-
tion can return a 2-byte address defined as {t abl e: ent ry} which points to its return
argument. The advantages of reference passing are threefold. First, functions can now
return multiple arguments via structure references. Secondly, we now avoid the problem
of passing the actual data of large data-structures (like a matrix) through the system stack
thus avoiding unnecessary overhead. Finally, the address as defined above, alows the
function-token to easily determine the data-type of the return argument (at run time) since
the table value corresponds to the type. This run-time type information can then be used
by the handler to convert arguments in a specific manner or to provide various services
based on the receive types (allows the handler to overload itself).

Handling a set of mixed data-types does not seem to provide any roadblocks to any
given interpreter implementation specifically. The PJT design does seem to provide a nat-
ural way to incorporate reference passing due to its table-driven emphasis. Overall, we
feel that a more unified approach is needed and can be established as more difficult prob-
lems are attempted.

13.9.2 Module Implementation

This section discusses two aspects of modularization with respect to the linear PJT imple-
mentation. First we discuss a basic encapsulation technique and then we look into how
modules are actually executed. One possible implementation of the module structureis:

cl ass Modul e {
int ArityM nusl;
char ReturnType;
int Size;
Node *Genone;

Note that a Modul e has characteristics in common to both a Pr ogr am(Si ze, Genorre)
and Tokens (ArityM nusl, Ret urnType). It is very important in a C implementation
that all 3 of these structures be set up so that the module parameters correctly overlay the
parameters it hasin common with the other 2 structures. This overlaying allows us to treat
aMdul e asaPr ogr am(during evaluation) or aToken (for referencing token description
information) without any conditional coding needed. In C++, however, the shadowing
mechanism used with multiple inheritance provides a superior approach to overlaying
structures:

class Module : public Program Token { /*...*/ };

Now we can have a polymorphic program pointer such that references like P- >Genone
are allowable where P can be a pointer to a Pr ogr amor a Modul e. Furthermore, we can
say T->Arit yM nus1 where T alows us to access the arity information in a Modul e or
Token without having to know if T actually pointsto aMbdul e or a Token object.

13.9.2.1 Encapsulation

There are various approaches for defining or encapsulating modules. Koza [1990] uses an
approach called Automatically Defined Functions (ADFs). His approach is LISP based
and involves every program being syntactically constrained. Angeline and Pollack [1993]
suggest a free form approach where you ssimply encapsulate a subtree or a segment of a
subtree which has already evolved in your current population.

Our technique follows from Angeline and Pollack. We first randomly select a subtree
which is of a minimum size and inspect the terminals of that sub-tree. The number of dif-
ferent variable-terminals determines the arity of the encapsulated subroutine. Finally, we
re-define each such variable-terminal in the subtree so that it references a general Ar g-
St ack instead of aglobal Var i abl eTabl e. Thisthen makes all of the parametersfor that
subtree “local”.

For an example, consider encapsulating the following expression:

Prefix:* + + Xa X - Yb Infix: (X+a+X)*(Y-b)

If we were to compress the segment {+ + X a X}, we would have the following module
defined after compression:

Module (M:
arity = 1;
size = 4;
genone = {add, add, arg:0, const:a, arg:O0}

The original program would also be compressed or re-defined such that the new second
and third nodes now correspond to a“module-call”:

Prefix:* MX - Y b Infix: M X) *(Y-b)

So now when the host program is executed, it will call the module-handler routine
which will in turn find module Min the module table, and execute it's internal genome
sequence. When this happens, the variable X will now be processed as an argument. That
is, the module handler will PUSH the value of X on the Ar gSt ack before actually execut-
ing the module's genome. Since, al of the variables in the module reference the Ar g-
St ack, the phenotype of the host program remains constant even though the genotype of

the program has indeed been altered. Ancther point is that although the subtree contains 3
terminals, one of the terminals is a constant and the other 2 terminals are the same. Thus
the arity of the newly defined moduleisonly 1.

The encapsulation routine can be implemented with the following steps:

1. get a free module entry from the module table. If a free entry is not available, then
abort.

2. find a random subtree of a minimum size from the host’s genome array. Here we can
use the same routine used to obtain subtreesin the crossover implementation.

3. inspect al of the terminals in the subtree and determine which ones are constants and
which ones represent unique variables. The unique variables are re-defined to reference
the Ar gSt ack and Ar gHandl er as opposed to being variables.

4. define the module by copying over the subtree to the internal genome array of the mod-
ule. Continue defining the module by setting the modul€’s size to be equal to the subtree
size and set the modul€’s arity parameter to be the number of unique variables found in the
subtree.

5. re-define the host program to reflect the compression/mutation operation. The subtree
segment is replace by the call segment and the host-program’s size parameter is decreased
by the difference between the subtree size and the number of nodes in the call (this equals
1+ modul€'s arity).

13.9.2.2 Module Execution

Module implementation with respect to the actual execution of modules seems like it
might be easier to accomplish in a postfix implementation as opposed to prefix. Thisis
due to the fact that subroutines naturally fit into a stack scheme. For postfix, this means
that when a subroutine is to be executed, its parameters will automatically be waiting on
the stack. For prefix, this is not the case. Each function or module is responsible for
obtaining its own arguments. Since these arguments are outside the module, the module
handler needs to load the Ar gSt ack with the needed parameters on behalf of the given
modul e before that moduleis actually invoked. Since such a handler can obtain the needed
arguments by simply doing an Eval Next Ar g() , it turnsout that our prefix scheme allows
for a straightforward implementation and does not require any additional overhead com-
pared to postfix. The code is shown in Figure 13.10.

13.9.3 Handling Recursion

Recursion can be promoted at two levels in a GP application. The first approach is to
allow the main program itself to be called recursively by an internal handler. By adding a

inline unsigned char Currentlndex() { return current_node->t ; }

voi d nodul e_handl er ()

{
Program *PrgSave; Node *NodeSave; int i;

// initialize the local arg stack
for (i=0; i<MduleTable[lNDEX].Arity; i++)
ArgSt ack. Push = Eval Next Arg();

/1 now save the global prg pointer and token index
PrgSave = Prg; NodeSave = current_node;

/1 now make our gloable refs point to the subroutine at hand
Prg = Mdul eTabl e[I NDEX]; NodePtr = Prg->Genone;

/'l now execute the nmodul e at hand
Eval Next Arg() ;

/1 restore the global references
Prg = PrgSave; NodePtr = NodeSave;
}

Figure 13.10
The module handler.Thisis called when Eval ing amodule node.

Recur se- Handl er to thefunction set, the program itself can essentially be“called”. This
Recur se- Handl er would invoke the program in the same way that the platform invokes
the program except that the program would be passed an argument from an internal node
as opposed to a“case” value. For example, consider asimple symbolic regression problem
of 2 independent variables. For such an application, each program is essentially a subrou-
tine of arity 2. A Recur se- Handl er could be implemented as a function-token, with an
arity equal to the program’s arity, allowing it to obtain the proper number of arguments
before calling the host program. In the example code shown in Figure 13.11 we use the
argument stack. Each time the host program isrecursively called, its variable handlerswill
access values further down this stack. We also use a special recursion stack so we can
return to this point when the program completes.

Now instead of invoking programs with the usual Eval Next Ar g() macro, we need to
keep restarting the program as long as the recursion stack is non-empty at the popped
current _node location.

The second recursion scheme involves the use of modules. The ideais to allow a pro-
gram to contain recursive subroutines. This is accomplished by mutating an existing mod-
ule Mby finding an internal function node within Mwhich has the same arity as Mitself. We
then replace this internal function node with a Module-Recurse-Handler node which will

RETURN_TYPE Recur seHandl er ()

{
//first load up our argunment stack with the calling paraneters
for (i=0; i<PROGRAM ARITY; i++)
ArgSt ack. Push (Eval Next Arg()); //PUSH autonatically

//save our current location so that the host eventually
/lreturns here
Recur seSt ack. Push (current_node);

//now restart the host programand “call” it
current_node = Genonme - 1; Eval NextArg();
}

Eval Recur si veProgram ()

{
current_node = Genone -1; Eval NextArg(); //normal invocation
/ l assi st recursion:
whil e (current_node = RecurseStack. Pop) Eval Next Arg();
}
Figure13.11

A handler for nodes which mean “call this program recursively”, and awrapper to make the first (non-recursive)
call.

“call” Min a similar manner that the handler outlined above called the main program. To
maintain syntax, this Module-Recurse-Handler would have to able to assume an arity
which is equal to the arity of M For either recursive approach, we fed that it would be
advantageous to bind the recurse-handler to an if-handler in order to increase the chances
that the recursion process compl etes.

13.94 Simulated Multi-Tasking

Many applications require multiple trees to be evaluated in parallel. That is, one often
wants to optimize something which consists of many parts in which each sub-part inter-
acts with the other sub-parts in a parallel manner (i.e. the emergent behavior of ant colo-
nies). Fortunately, it is not impossible to achieve multi-tasking with prefix. The basic idea
is to somewhat combine prefix with a stack implementation. In other words, the genome
ordering is still a prefix ordering, but the parameters are passed by an explicit stack and
the genome is no longer executed by recursion but by the use of an execution stack which
allows usto mimic what the system stack did. See Figure 13.12

13.9.5 Using Tablesto Evaluate Diversity

The Jump Table mechanism results in afair number of tables (arrays) being used for con-
stants, variable, modules etc. An added bonus of a table-driven approach is that such

class Task { PROGRAM &prg; int Index, Status; };
main ()

Task Tasks[2] = {{Prg[0], 0, RUNNING {Prg[1l], O, RUNNING};
Mil ti Task (Tasks, 2);
}

mul ti _task (TASK &Tasks, int TaskCount)
{

int t=0; //the task index

for (;;) { /! Forever

swi tch (Functions[Tasks[t].|ndex]. Type) {

case FUNCTI ON:
ExeSt ack. push (Tasks[t].Index); //save index for |ater exec
Tasks[t] .| ndex++; //goto the next node for this task
br eak;

case TERM NAL:
// execute the terminal node which will push a value on stack
EVAL (Tasks[t]. | ndex++);

//check if stack count is equal to the arity of the last func
//on the ExeStack which is still waiting to execute. If it is,
//then go ahead and evaluate this funct we saved earlier
if (ArgStack[t].Count == ArityOfLast Function)
EVAL (ExeStack[t].pop);

//now do a task switch
if (++t == TaskCount) t = O;
br eak;
case END:
tasks[t].status = COVWPLETED;
if (all _tasks_conpleted ()) return; //****done*****

}

Figure13.12
Simulated Multi-tasking using prefix.

tables can provide an easy means to dynamically evaluate diversity in the current popula-
tion. This is accomplished by adding a “Used” bit to each entry in any of the tables just
mentioned. To measure the ongoing diversity of the constants, we add a line to the con-
stant handler:

voi d ConstHandler ()

{
const Tabl e[| NDEX] . Used = 1;

return (const Tabl e[| NDEX]) ;
}

Now if we clear al of the “Used” bits to zero at the start of each generation, the bits
which are not set when the generation has completed, correspond to constants which are
no longer in use. We tried this out for our simple regression application and were amazed
at how quickly the total number of unused constants increased.

13.10 Conclusion and Future Directions

The lower-level implementation issues surrounding what we call the Genome Interpreter
have been presented. As opposed to just discussing issues along a single implementation
direction, we have considered 5 different variations and evaluated each of these interpret-
ers based on their efficiency, flexibility, and ease of coding. Our results clearly showed
that a linear, prefix-ordered, jump-table approach (PJT) provides the best overall frame-
work for the actual implementation.

One method of evauation that could be even faster than a genome interpreter is a
genome compiler. Although our interpreter has little time overhead, the overhead can still
be significant if the functions and/or terminals take only a few machine instructions to
implement. For example, when performing constant and variable |lookup, and addition and
multiplication, the overhead of the interpreter will still swamp the time needed to actually
evaluate the node. However, the only way to do away with the function call overheadin an
interpreter is to write many versions of each function, namely, one which does a function
call when it's argument is a complicated subtree, and others to do in-line variable or con-
stant lookup.

This could be solved using a genome compiler, which, given a tree, outputs machine
language that doesn’'t perform any function calls. If, asis often the case, the same tree will
be evaluated many times, the tree will only need to be compiled once instead of inter-
preted many times. Additionally, since crossover combines large chunks of different trees,
we may be able to save compile time by not recompiling the chunks, but reusing the com-
piled code of the parents. One drawback, however, is that flow control may skip large

parts of the tree, so that only a small part of the tree is ever interpreted whereas al of it
must be compiled. This could make compiling slower than interpreting. And all sorts of
variations are possible, such as compiling modules but interpreting the rest. Overall,
attempting a genome compiler is a promising direction for speeding up evaluation even
further.

Acknowledgments

Thanks to Greg Schmidt of Allen Bradley Controls for feedback on various issues pre-
sented in this chapter. Also, thanks to Graham Spencer of Stanford University for his early
contributions with respect to testing. We also must recognize the importance of various
discussions which took place on the GP internet mailing-list (organized by James Rice of
Stanford University) related to implementation issues. Finaly, thanks to those who
reviewed this chapter for their many helpful comments.

Bibliography

Angeline, PJ. and J. B. Pollack (1993) Evolutionary Module Acquisition, Proceedings of the Second Conference
on Evolutionary Programming.

Eckel, Bruce (1990) Using C++. Oshorn McGraw-Hill.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Reading MA: Addison
Wesley.

Holland J. (1975) Adaption in Natural and Artificial Systems, Ann Arbor, MI: The University of Michigan Press.
Koza, J.R. (1992) Genetic Programming. The MIT Press.

Montana, D.J. (1993) Strongly Typed Genetic Programming, BBN Technical Report #7866, May 1993.

Tackett, W.A. (1993) Genetic Programming for Feature Discovery and Image Discrimination, Proceedings of the
Fifth International Conference on Genetic Algorithms. Morgan Kaufmann..

Winfield, A. (1983) The Complete Forth, Wiley Press

	Mike J. Keith and Martin C. Martin
	13.1 �Introduction�
	(13.1)

	13.2 �Pointer Based Implementations
	struct Node {
	unsigned char Type ;
	unsigned char Arity ;
	RETURN_TYPE Value ;
	struct Node *Args[MAX_ARGS] ;
	RETURN_TYPE ArgValues[MAX_ARGS] ;
	RETURN_TYPE (*EvalFunc)(); /* pointer to function that
	evaluates the subree rooted at this node. */
	}
	Figure 13.1

	RETURN_TYPE Eval (struct Node *N)
	{
	if (N->Type == TERMINAL) return N->Value ;
	if (N->Type == MACRO) return (*N->EvalFunc)(N);
	else {
	for (i=0; i<N->Arity; i++)
	ArgValues[i] = Eval(N->Args[i]);
	return (*N->EvalFunct)(N);
	}
	}
	Figure 13.2

	class Node { public: virtual RETURN_TYPE Eval()=0; };
	class AddNode : public Node
	{
	Node *Arg[2];
	public:
	RETURN_TYPE Eval() {return Arg[0]->Eval() + Arg[1]->Eval();}
	};
	class VarNode : public Node
	{
	int Index;
	public:
	RETURN_TYPE Eval() {return VarTable[Index];}
	};
	Figure 13.3

	13.3 �A Postfix, Stack-Based Approach
	Postfix: a b + c d - + Infix: (a+b) + (c-d)
	class Program
	{
	int Size;
	Node Genome[MAX_GENOME_SIZE];
	Stack stack;
	public:
	RETURN_TYPE Eval() ;
	};
	RETURN_TYPE Program::Eval () {
	for (int i=0; i<Size; i++) { // For each node in order:
	switch (Genome[i].GetType()) {
	case ADD: { stack.PUSH(stack.POP() + stack.POP()) ; break; }
	case MULT: { stack.PUSH(stack.POP() * stack.POP()) ; break; }
	case VAR: { stack.PUSH(genome[i].GetVar()); break; }
	}
	}
	}
	Figure 13.4

	13.3.1� Memory Efficiency
	(13.2)
	class Program { int Size; char TraitIndex; /* others...*/};

	13.3.2� Manipulating Postfix Programs
	13.3.2.1� Postfix Initialization
	if ((NumOpenBranches + CurrentSize) == TargetSize) Resolve = TRUE;
	int Program::Initialize (int depth, int max_args, int loc)
	{
	if (depth == 0) Genome[loc].Initialize(0) ; // init to terminal
	else {
	int num_args = /* random number from 0 to max_args */ ;
	for (int i=0; i<num_args; i++) { // make the arguments
	loc = 1 + Initialize (depth-1, max_args, loc) ;
	}
	Genome[loc].Initialize(num_args) ;
	}
	}
	Figure 13.5

	Initialize (int TargetSize, int MinCount)
	{
	int i, CurrentSize = 0;
	Node *NodePtr = Genome + MaxGenomeSize;
	while (1) {
	if ((++CurrentSize + abs(StackCount)) == TargetSize) ||
	(StackCount == MinCount))
	StackCount += GetRandomTerminal(--NodePtr);
	else if (StackCount == 0)
	StackCount += GetRandomFuntion(--NodePtr);
	else
	StackCount += GetRandomToken(--NodePtr);
	if (CurrentSize == TargetSize) break;
	}
	for (i=0; i<TargetSize; i++) //left shift the genome
	*NodePtr = *NodePtr++ + (MaxGenomeSize-TargetSize);
	}
	Figure 13.6

	13.3.2.2� Postfix Crossover
	P1 = { a[1], b[2], a[3], -[2], +[1], c[2], -[1] }

	13.3.2.3� Postfix Mutation
	13.3.3� The Flow Control Problem with Postfix

	13.4 �Mixfix
	(if Y then X - (a+b)) + c
	Y IF X a b + - ENDIF c +
	X Y Z IF + - //the AritySum is OK, but no ENDIF
	X IF:5 X a b + - c + //the IF will skip 5 tokens if Y is FALSE
	Y IF:4 a b + ELSE:3 c d -

	13.5 �Prefix Ordering
	1.� arguments must be explicitly evaluated by their parent which allows control constructs to be ...
	2.� the coding required to skip a subtree is quite simple and does not require the special mechan...
	3.� an explicit stack mechanism is not needed which reduces coding complexity and performance ove...
	Node *current_node ; // The current Node being evaluated.
	class Individual {
	Node *Genome ; // pointer to an array of nodes.
	public:
	RETURN_TYPE Eval()
	{ current_node = Genome; return EvalNextArg() ; }
	}
	inline EvalNextArg() { return(current_node++).Eval() ; }
	inline SkipNextArg()
	{ for(int count=0; count>-1; count+=(current_node++).ArityM1()); }
	class Node {
	RETURN_TYPE (*EvalFnct)() ;
	public:
	RETURN_TYPE Eval() { return (*EvalFnct)() ; }
	}
	int x = 1.234 ;
	float add() { return EvalNextArg() + EvalNextArg(); }
	float varX() { return x ; }
	Figure 13.7

	int AND()
	{
	if (!EvalNextArg()) { SkipNextArg(); return FALSE; }
	else return EvalNextArg() ;
	13.5.1� Initialization, Crossover and Mutation with Prefix
	13.5.2� Handling Program Flow with Prefix
	RETURN_TYPE if_then_else()
	{
	if (EvalNextArg()) {
	const RETURN_TYPE result = EvalNextArg();
	SkipNextArg() ;
	return result ;
	} else {
	SkipNextArg() ;
	return EvalNextArg() ;
	}
	}
	RETURN_TYPE while ()
	{
	Node *Start = current_node;
	while (EvalNextArg()) {
	EvalNextArg() ;
	current_node = Start ;
	}
	SkipNextArg() ; // skip the body of the loop
	}
	Figure 13.8

	13.6 �The Node Representation
	13.6.1� General Data Support
	class Token { char *Name; char ArityMinus1; float (*Funct)(); /*...*/};

	13.6.2� The Opcode Format
	#define RETURN_TYPE float
	class Token JumpTable[256] ; //maps node number to info about that node.
	class Node *current_node ; // The node being evaluated.
	/* Function handlers */
	RETURN_TYPE Add() { return EvalNextArg() + EvalNextArg() ; }
	RETURN_TYPE Mult() { return EvalNextArg() * EvalNextArg() ; }
	// other functions
	/* Variable handlers */
	RETURN_TYPE x, y ;
	RETURN_TYPE X() { return x ; }
	RETURN_TYPE Y() { return y ; }
	/* Constant handler */
	RETURN_TYPE ConstTable[255-18+1] ;
	RETURN_TYPE Const() { return ConstTable[*current_node-18] ; }
	RETURN_TYPE EvalNextArg() { return (*JumpTable[current_node++].funct)() ; }
	class Node genome[] = { 0/*add*/, 1/*mult*/, 16/*x*/, 17/*y*/, 16/*x*/ };
	void InitJumpTable()
	{
	JumpTable[0].name = “add” ; JumpTable[0].ArityM1 = 1 ;
	JumpTable[0].funct = Add ;
	/* other functs and vars*/
	for (int i=18; i<=255; i++)
	JumpTable[i].funct = Const, JumpTable[i].ArityMinus1 = -1 ;
	}
	Figure 13.9

	class Node {
	unsigned functIndex:4; //function index
	unsigned tableIndex:12; //table index
	// ...
	class Node { unsigned char functIndex, tableIndex; };
	float Float3() {
	return FloatConstantTable[2][current_node->tableIndex] ;

	13.6.3� The Jump Table Mechanism
	return (Tokens[(current_node++)->functIndex].Funct)() ;

	13.7 �The Prefix, Jump-Table (PJT) Approach
	13.8 �Results
	, (13.3)
	Table 13.1

	13.9 �Advanced Topics (Looking for Roadblocks)
	13.9.1� Beyond Closure: Handling Multiple Data Types
	13.9.2� Module Implementation
	class Module {
	int ArityMinus1;
	char ReturnType;
	int Size;
	Node *Genome;
	class Module : public Program, Token { /*...*/ };

	13.9.2.1� Encapsulation
	Module (M):
	arity = 1;
	size = 4;
	1.� get a free module entry from the module table. If a free entry is not available, then abort.
	2.� find a random subtree of a minimum size from the host’s genome array. Here we can use the sam...
	3.� inspect all of the terminals in the subtree and determine which ones are constants and which ...
	4.� define the module by copying over the subtree to the internal genome array of the module. Con...
	5.� re-define the host program to reflect the compression/mutation operation. The subtree segment...

	13.9.2.2� Module Execution
	inline unsigned char CurrentIndex() { return current_node->t ; }
	void module_handler ()
	{
	Program *PrgSave; Node *NodeSave; int i;
	// initialize the local arg stack
	for (i=0; i<ModuleTable[INDEX].Arity; i++)
	ArgStack.Push = EvalNextArg();
	// now save the global prg pointer and token index
	PrgSave = Prg; NodeSave = current_node;
	// now make our gloable refs point to the subroutine at hand
	Prg = ModuleTable[INDEX]; NodePtr = Prg->Genome;
	// now execute the module at hand
	EvalNextArg() ;
	// restore the global references
	Prg = PrgSave; NodePtr = NodeSave;
	}
	Figure 13.10

	13.9.3� Handling Recursion
	RETURN_TYPE RecurseHandler()
	{
	//first load up our argument stack with the calling parameters
	for (i=0; i<PROGRAM_ARITY; i++)
	ArgStack.Push (EvalNextArg()); //PUSH automatically
	//save our current location so that the host eventually
	//returns here
	RecurseStack.Push (current_node);
	//now restart the host program and “call” it
	current_node = Genome - 1; EvalNextArg();
	}
	EvalRecursiveProgram ()
	{
	current_node = Genome -1; EvalNextArg(); //normal invocation
	//assist recursion:
	while (current_node = RecurseStack.Pop) EvalNextArg();
	}
	Figure 13.11

	13.9.4� Simulated Multi-Tasking
	class Task { PROGRAM &prg; int Index, Status; };
	main ()
	{
	Task Tasks[2] = {{Prg[0], 0, RUNNING, {Prg[1], 0, RUNNING}};
	MultiTask (Tasks, 2);
	}
	multi_task (TASK &Tasks, int TaskCount)
	{
	int t=0; //the task index
	for (;;) { // Forever
	switch (Functions[Tasks[t].Index].Type) {
	case FUNCTION:
	ExeStack.push (Tasks[t].Index); //save index for later exec
	Tasks[t].Index++; //goto the next node for this task
	break;
	case TERMINAL:
	//execute the terminal node which will push a value on stack
	EVAL (Tasks[t].Index++);
	//check if stack count is equal to the arity of the last func
	//on the ExeStack which is still waiting to execute. If it is,
	//then go ahead and evaluate this funct we saved earlier
	if (ArgStack[t].Count == ArityOfLastFunction)
	EVAL (ExeStack[t].pop);
	//now do a task switch
	if (++t == TaskCount) t = 0;
	break;
	case END:
	tasks[t].status = COMPLETED;
	if (all_tasks_completed ()) return; //****done*****
	}
	}
	}
	Figure 13.12

	13.9.5� Using Tables to Evaluate Diversity
	void ConstHandler ()
	{
	constTable[INDEX].Used = 1;
	return (constTable[INDEX]);

	13.10 �Conclusion and Future Directions
	Acknowledgments
	Bibliography

